Anaphora and the Logic of Change®

Reinhard Muskens
Dept. of Linguistics, Tilburg University
P.O. Box 90153, 5000 LE Tilburg, Holland!

INTRODUCTION

There are three major currents in semantic theory these days. First there is what Chierchia [1990]
aptly calls “what is alive of classical Montague semantics”. Secondly, there is Discourse
Representation Theory. Thirdly, there is Situation Semantics. Each of these three branches of
formal semantics has its own specialities and its particular focuses of interest. Each can boast of
its own successes. Thus Montague semantics models the Fregean building block theory of
meaning in a particularly elegant way, gives a unified account of the semantics of noun phrases
as generalized quantifiers and a natural but sophisticated treatment of coordination phenomena.
Discourse Representation Theory (DRT), on the other hand, treats different kinds of anaphora
succesfully, extends the field of operation of semantic theory to the level of texts, handles
Geach’s so-called ‘donkey’ sentences in a convincing way and generally deepens our
understanding of semantics by its insistence on the dynamic rather than static nature of meaning.
Situation Semantics, lastly, emphasizes the partial character of meaning and information and is
very much focussed on the contextual dependance of language. The theory gives a nice treatment
of the semantics of perception verbs (see Barwise [1981]) and an interesting new approach to the
Liar paradox (Barwise & Etchemendy [1987]).

Unfortunately there is no single semantic framework in which all these niceties can be com-
bined and although the three semantic theories are historically connected (all three derive from
Richard Montague’s pioneering work) and each claims to be a formal, mathematical theory of
meaning, it is difficult to compare the three theories due to the diverging technical setups. It is
hard to find a position from which all three can be viewed simultaneously and it should be noted
that each is lacking in the sense that it cannot explain or copy all successes of the others.

What is needed, clearly, is a synthesis, and indeed some work has been done that goes in the
direction of a unified theory of semantics. So, for example, Barwise [1987] compares
Montague’s [1973] generalized quantifier model of natural language quantification, further devel-
oped in Barwise & Cooper [1981], with the approach taken in Barwise & Perry [1983]. Rooth
[1987] takes Barwise’s paper as a starting point and gives a Montague style fragment of English

*

I would like to thank René Ahn, Nicolas Asher, Johan van Benthem, Martin van den Berg, Gennaro
Chierchia, Peter van Emde Boas, Paul Dekker, Jan van Eyck, Jeroen Groenendijk, Theo Janssen, Jan Jaspars, Hans
Kamp, Fernando Pereira, Barbara Partee, Frank Veltman and Henk Zeevat for their comments, criticisms and dis-
cussion. An earlier version of this paper has circulated under the title ‘Meaning, Context and the Logic of
Change’.

1" From January 15t 1991: CWI, P.O. Box 4079, 1009 AB Amsterdam, Holland.

413

that embodies a version of the Heim / Kamp theory. Groenendijk and Stokhof [1990] developa
Montagovian version of Discourse Representation Theory as well, calling it ‘Dynamic Montague
Grammar’ (DMG), while Muskens [1989a, 1989b], to give a fourth example, shows that an im-
portant feature of Situation Semantics—partiality—is compatible with Montague’s type theoretic
approach to semantics and that the Situation Semantic analyses of perception verbs and proposi-
tional attitudes can be recast in a ‘Partial Montague Grammar’ .2

In this paper I want to make a further contribution towards a synthesis of the existing frame-
works of formal semantics. I want to try my hand at another version of the theory of reference
developed by Kamp and Heim. This version will be compatible with Montague’s framework and
compatible to a large extent with my previous unification of that framework with the partiality of
Situation Semantics. I shall make extensive use of some of the very interesting ideas that were
developed in Groenendijk & Stokhof’s DMG and its predecessor Dynamic Predicate Logic
(DPL, see Groenendijk & Stokhof [1989]). But while these systems are based on rather
unorthodox logics,? I simply use the (many-sorted) theory of types to model the DRT treatment
of referentiality. Ordinary type theory is not only much simpler to use than the ‘Dynamic
Intensional Logic’ that Groenendijk & Stokhof employ# (or, for that matter, than Montague’s
IL), it is also much better understood at the metamathematical level. Logics ought not to be mul-
tiplied except from necessity.

It turns out that the cumulative effect of this and other simplifications makes the theory admit
of generalizations more readily. In a sequel to this paper (Muskens [to appear]) I’ll show that,
apart from the formalization of Kamp’s and Heim’s treatment of nominal anaphora given here,
the essentially Reichenbachian theory of tenses that has been developed within the DRT frame-
work can be formalized in my theory. That Montague’s treatment of intensionality can be incor-
porated without any complications will be shown as well.

Our theory will be based on two assumptions and one technical insight. The first assumption
is that meaning is compositional. The meanings of words (roughly) are the smallest building
blocks of meaning, and meanings may combine into larger and larger structures by the rule that
the meaning of a complex expression is given by the meanings of its parts.

The second assumption is that meaning is computational. Texts effect change, in particular,
texts effect changes in context. The meaning of a sentence or text can be viewed as a relation
between context states, much in the way that the meaning of a computer program can be viewed
as a relation between program states.

What is a context state? Evaluation of a text may change the values of many contextual pa-
rameters: the temporal point of reference may move, the universe of discourse may grow larger
or smaller, possible situations may become relevant or irrelevant to a particular modality, presup-
positions may spring into existence, and so on. If we want to keep track of all this, we must set
up a ‘conversational scoreboard’ in the sense of Lewis [1979], a list of all current values of con-

2 ' The partial theory of types is a simple (four-valued, Extended Strong Kleene) generalization of the usual, total,
theory of types that we shall employ below. The setup is relational as in Orey [1959], not functional. The logic is
weaker than the total logic but it shares many of the latter’s model-theoretic properties. So, for example, it has the
property of generalized completeness (validity with respect to Henkin’s generalized models can be axiomatized).
For technical information see the works mentioned.

For example, in DPL an existential quantifier can bind variables that are outside of its syntactic scope. This
directly reflects the fact that in natural language indefinite noun phrases create discourse referents that can be picked
up later by anaphoric pronouns not in their scope. While it may be nice to have such a close connection between
logic and language, I consider the price that is to be paid in the form of technical complications much too high.

Dynamic Intensional Logic (DIL) is due to Theo Janssen (see Janssen [1983]).

414

textual parameters. We may then try to study the kinematics of score, the rules that govern score
change. On top of this, if we want to be able to interpret a text, we must have a list of all dis-
course referents active at a particular point in discourse. Texts dynamically create referents that
can be referred to at a later instance (see Karttunen [1976], Heim [1982]). For example, if we
read the short text in (1) then after reading its first sentence a discourse referent is set up that is
picked up by the pronoun she in the second sentence.

(1 A girl walked by. She; was pretty.

So we must keep track of two lists. One list tells us what values Lewis’s components of conver-
sational score have and one tells us what value each discourse referent has at each point in dis-
course.5 We may combine these two lists into one and call it a (context) state.

If we were to design a computer program to keep track of the state of discourse (as in
Karttunen [1976]) it would be a natural choice to associate each component of conversational
score and each discourse referent with a variable in that program. In fact, we may entertain the
metaphor that a natural language text is a program, continually effecting the values of a long list
of variables. Interpretation of a text continually changes the context state and the context state at
each point in discourse in its turn effects interpretation. In much the same way a computer pro-
gram changes the values of its variables while the values of these variables effect the course the
computation takes.

The technical insight I referred to above is that virtually all programming concepts to be found
in the usual imperative computer languages are available in classical type theory. We can do any
amount of programming in type theory. This suggests that type theory is an adequate tool for
studying how languages can program context change. Since there is also some evidence that type
theory is a good vehicle for modelling how the meaning of a complex expression depends on the
meaning of its parts, we may hope that it is adequate for a combined theory: a compositional the-
ory of the computational aspects of natural language meaning.

The logic of programming is usually studied in a theory called dynamic logic and I'll show
how to generalize this logic to the full theory of types in the next section. When this is done I'll

show how to apply the resulting generalization to some phenomena that are central to Discourse
Representation Theory in section 2.

1. TYPE THEORY AND DYNAMIC LOGIC

Dynamic Logic (Pratt [1976], for an excellent survey see Harel [1984], for a transparent intro-
duction Goldblatt [1987]) is a logic of computation. In dynamic logic the meaning of a computer
program is conceived of as a relation between machine states, execution of a program changes
the state a machine is in. In an actual computer a machine state could be thought of as consisting
of the contents of all registers and memory locations in the device at a particular moment. But in
theory we make an abstraction and consider the abstract machines that are associated with pro-

grams. We can identify the states of such program machines with functions that assign values to
all program variables.

5 It may seem that we need more than one value for the referent that was set up by a, girl in (1), but see the
discussion on nondeterminism below.

415

Thus, for example, suppose we have seven variables in our program, of which u, v and w
range over natural numbers, X and Y range over sets of natural numbers and card and bool
range over playing cards and the values yes and no respectively. Then the columns in the fol-
lowing figure can be identified with machine states.

i i i3 iy is
u: 0 22 7 22 22
v 0 2 44 2 2
w. 5 2 7 22 22
X: {nln=9} | {30} {5} {3 0} {3 0}
Y: {314, 8} | {nl n=2} @ {30} |{nl|n=2}
card: 3v 104 3 10¢ 104
bool: yes yes no yes yes
fig. 1

The meaning of a given program is identified with the set of all pairs of states (i, j) such that
starting in state i we may end in state j after execution of that program. For example, suppose
that our abstract machine is in state i, and that the statement to be executed is the assignment
w:= u. Then after execution the machine will be in state i, The value that was assigned to u in
i, is now assigned to the program variable w as well. This means that the pair {,, is) is consid-
ered to be an element of the meaning of the atomic program w:= u. More generally, the mean-
ing of w:= u is the set of all pairs {j, j) such that the value of w at j equals the value of u at
i, while the values of all other program variables remain unaltered.

Apart from programs we may also consider formulae like the identity expression u = w.
Formulae express no relation between machine states, but are just true or false at any given state.
For example u = w is false at states i, and i,, but true at states 73, i, and i5. Consequently, the
meaning of a formula is identified with a set of machine states.6

Let us consider programs and formulae that are more complex than those that consist of just
one assignment statement or just one identity expression. The syntax of dynamic logic offers the
following constructions: Suppose that y and J are programs and that A and B are formulae,
then L, A— B and[y]A are formulaeand y; &, y U 8, A? and y* are programs. The for-
mula L is defined to be false at every state, A — B is false at a state if and only if A is true and
B is false at that state. In Goldblatt’s book we find the following other intended meanings:

) do y and then &

yuéd do either y or & non-deterministically

A? test A: continue if A is true, otherwise “fail”
r* repeat y some finite number (= 0) of times
[vlA after every terminating execution of y, A is true

6 Readers familiar with Discourse Representation Theory will note that the distinction between formulae and
programs in dynamic logic mirrors the distinction between conditions and DRSs in DRT.

416

I'11 discuss these constructions one by one now. The first is the sequencing of statements y ; 0.
This sequencing has a lot in common with the consecution of sentences in a text and with the be-
haviour of the word “and” in English. If we start in state i, of fig. 1 and execute the sequential
statement w:= u ; Y:= X then execution of the first part will take us to state is as before,
after which an execution of the second part will bring us to i,. Thus the pair {1, i, is an ele-
ment of the meaning of the program w:= u ; Y:= X. In general, if the meaning of program y
is the relation R, and the meaning of J is the relation R then the meaning of y; O is the set of
all pairs (i, j) such that i, k) € R, and {k, j) € Rs for some state k. The resulting relation
is sometimes called the product of Ry and Rs If both relations happen to be functions, that is if
we are considering deterministic programs, this product is nothing but the composition of these
functions.

But we do not restrict ourselves to the consideration of deterministic programs (programs ex-
pressing functions), as the second construct, the choice, makes clear. Suppose we are in state i,
then execution of w:= v will bring us to i,, but execution of Y:= X will bring us to i,
Thus execution of w:= v U Y:= X may either land us in 7, orin i,. It follows that both
(i 1,) and (is, iy) are elements of the meaning of w:= v U Y:= X. In general, the meaning
of y U & is the union of the relations that are the meanings of y and 5 respectively.

From a programming point of view it might at first blush not seem very realistic to include a
nondeterministic construction in the syntax: the computers that you and I have at our desks cer-
tainly operate in a deterministic way. But the allowance of nondeterminism greatly facilitates the
study of the semantics of programming languages and computer language semanticists view de-
terministic programs as an interesting special case to which the results of their more general
studies can be applied. In natural language nondeterminism seems to be the rule rather than the
exception. Consider the following short text.

(2) A1 man entered. Hej ordered a beer.

Suppose we have a program that is designed to read and interpret texts like these (a program like
the one in Karttunen [1976]). The program does not operate on (symbolic representations of)
natural numbers, sets of natural numbers and cards, but on (symbolic representations of) things
in the world, relations among these things, and so on. After reading the first sentence, the pro-
gram must have stored some man who entered in some internal store, say in v;; this man can
then be picked up later as the referent of he; in the second sentence. Now, which man should be
stored in v; ? This appears to be a great problem if we think of the program as embodying a de-
terministic automaton. Suppose that in fact both Bill and John entered, but that only John ordered
a beer (while Bill ordered a martini). Then if the program stores Bill in v; the text will be inter-
preted as being false, while if John is stored, it will (correctly) come out true. But the program
cannot know this in advance, that is, after processing the first sentence it has no information that
allows it to discriminate between the two men. So, which man should be stored, the
‘indeterminate’ man? This solution would seem to land us right into the middle of Mediaeval
philosophy and into the knot of problems from which modern post-Fregean logic has freed us.
But if we allow our program to operate nondeterministically, the problem vanishes. We can
then let the meaning of the first sentence consist of those pairs of machine states {7, j) such that i
is like j except that the value of v, in j is some man who entered. In j; this may be Bill, in j; it
may be John and it may be some other man who entered in some other state (in fact, speaking
loosely, we might say now that we have stored an ‘indeterminate’ man in v;). Some of the men

417

stored may not have ordered a beer, but states in which the value of v; did not order a beer will
be ruled out by (2)’s next sentence.

How does (2)’s second sentence manage to rule out such states? This question brings us to the
third syntactic construct of dynamic logic in the list above, the test. The meaning of a program
A? (where A is a formula) is the set of all pairs (4, i) such that 7 is an element of the meaning
of A. To see how this can be used to rule out certain possible continuations of the computation,
consider the program (w:=v U Y:= X); u = w? and start its execution in state i;. After
executing the choice w:= v U Y:= X we land in states 7, and i, as before, but now execu-
tion of the test u = w ? ensures that i, is ruled out. The pair (is, i,) is an element of the
meaning of the construct as a whole, but the pair (1'5, i, is not, and all possible continuations
starting in i, have now become irrelevant. In a similar way we may think of the second sentence
in (2) as performing a test, ruling out certain possible continuations of the interpretation process.

Thus the first three syntactic constructs in our list have a close correspondence to phenomena
in natural language. Sequencing of programs is strongly reminiscent of the sequencing of sen-
tences in a text and of natural language conjunction generally. The nondeterminism that is intro-
duced by choice is closely connected to the indefinite character of indefinites. And tests rule out
certain possibilities in much the same way as natural language expressions may do.

But for the last two constructs in the list I see no direct application to natural language seman-
tics. I have merely included them for the sake of completeness and I should like to confine myself
to stating their semantics without discussion: The meaning of an jteration y* is the reflexive
transitive closure of the meaning of y and the meaning of a formula [y]A is the set of states i
such that for all j such that (j, j) is in the meaning of , j is in the meaning of A.

Now suppose we want to consider natural language phenomena in the light of the dynamic
logic sketched above and that we want to do this in the general (Montagovian) setting of Logical
Semantics. A first problem to solve then is of a logical character. On the one hand Montague se-
mantics is based on the theory of types, on the other we want to have the main concepts of dy-
namic logic at our disposal. How can we work in type theory and use dynamic logic too? The
solution is simple and takes the form of a translation of dynamic logic into type theory.

We’ll work with the two-sorted type theory TY», of Gallin [1975]. Essentially this is just
Church’s [1940] type theory, be it that there are three basic types, where Church uses only two.
The basic types are e, s and ¢, standing for entities, states and truth.values respectively. As I
stated above the syntactic constructs of dynamic logic can be divided into two categories: formu-
lae and programs. Formulae are true or false at a given state and thus should translate as terms of
type st (sets of states), while programs are state changers and get type s(st) (relations between
states). Define the translation function ' from the constructs of dynamic logic to those of type
theory inductively by the following clauses (j, j, k and I are variables of type s, X is a variable
of type st):

Wt =21

(A — B)t = Ai (Ati — Bti)

(v; 8) = Ajak(y7ik A 61 kj)

(y U) =2aij(ytijv otij)

(AN = Ajj (At A j=1)

(y*)* = Aij VX((Xi A VKI (XK A yTkl) — XI) = X))
([r1A)T = A Vj(yTij — At))

418

The clauses here closely follow the discussion of dynamic logic given above. We see that the
translation of L is the empty set of states, that A — B translates as the set of states at which ei-
ther the translation of A is false or the translation of B is true, that the meaning of y ; is given
as the product of the meanings of y and §, that the meaning of y U J is the union of the mean-
ings of its components and that the meaning of a test A ? is given as the set of all pairs 3, i)

such that A is true at i. The translations of y* and of [y]A are again listed for the sake of com-

pleteness only. The first gives the reflexive transitive closure of the meaning of y by means of a
second order quantification;” the second treats [y] essentially as a modal operator with an acces-
sibility relation given by y.

This translation embeds the propositional part of dynamic logic into type theory, the part that
contains no variables (or quantification) and hence no assignment statements. But we do want to
study how assignments are being made, for it seems that language has a capacity to update the
components of conversational score in a way reminiscent of the updating of variables in a pro-
gram. So let us return to our discussion of states, variables and assignment statements now.

The reader may have noted a contradiction between our treatment of states as primitive objects
and our earlier declaration that states are functions from program variables to the possible values
of these variables. We could try to remove this contradiction by taking states to be objects of
some complex type aff, where « is the type of variables and S is the type of their values. But
this plan fails, for in general there is no single type of variables and no single type of the values
of variables. Programming languages can handle variables ranging over many different data types
and human languages seem to be capable of storing many different sorts of things as items of
conversational score. It seems that we have a problem here. Was it caused by an all too strict ad-
herence to a typed system?

There is an ingenious little trick due to Theo Janssen [1983] that helps us out: Janssen simply
observed that we may go on treating states as primitive if we treat program variables as functions
from states to values. That is, we may shift our attention from the columns in figure 1 to the
rows, and instead of viewing (say) i, as the function that assigns the number 22 to u, the num-
ber 2 to v, theset {n | n =2} to Y, the card 104 to card and so on, we may view (say) w as
the function assigning the number 5 to i;, the number 2 to i», the number 7 to i3 etcetera. This
procedure is clearly equivalent to the older one and it saves us from the type clash we encoun-
tered above.

This means that we can regard states as inhabitants of our typed domains and the same holds
for the things that are denoted by program variables. States all live in the same basic domain Dk,
while the denotations of program variables may live in different domains. For example, if n is
the type of natural numbers then the denotation of u in figure 1 lives in Ds,, but the denotation
of X lives in Ds(pr). A program variable that has values of type « is a function of type sa it-
self.

Treating states as primitive and treating program variables as functions from states to values
thus allows us to have many different types of things that can be stored as the value of a variable
at a certain state. But now that we have assured ourselves of this possibility we shall refrain from
using it. For reasons of exposition we shall allow only type e objects to be values of program
variables and program variables consequently will have type se. In a sequel to this paper
(Muskens [to appear]), however, we’ll make a more extensive use of our possibilities and there

7 The treatment of iteration improves upon the results in Janssen [1983]. A treatment of recursion in the typed

models of classical higher order logic is given in Muskens [in preparation].

419

the theory will be generalized so that we can have any finite number of types of program vari-
ables.

We should, by the way, remove a possible source of confusion. We are treating the denota-
tions of program variables as objects in our ontology. Objects can be referred to in two ways, by
means of constants or by means of variables, and there is no reason to make an exception for ob-
jects of type se. In view of this, the term program variable is perhaps less than felicitous and I
want to change terminology now. Referring to the object I shall from now on use the term store,
a constant denoting a store is a store name and a (logical) variable ranging over stores a store
variable.? I take it that the syntactic objects that are usually called program variables are in fact
store names, not store variables. Stores are functions, and of course the values of a function
may vary in the sense that a function may assign different values to different arguments.

What effect does the execution of an assignment statement v := u have on a state? It changes
the value of the store named by v to the value of the store named by u, but it leaves all other
stores as they are. Consequently, if we write i[v]j for “states i and j agree in all stores, except

possibly in the store (named by) v”, the following should be our translation of the assignment
statement into type logic.

(v:i=u)t = 2ij(ilv]j A vji= ui)

The intuitive meaning of the formula i[v]j A vj = ui isthat i and j agree in all stores, except
possibly in store v and that the value of store v in j is identical to the value of store u in 1.

In order to make this really work two conditions must be fulfilled. The first of these is that the
expression i[v]j really means what we want it to mean. This we can ensure by letting i[v]j be
an abbreviation of Vug ((STu A u # v) — uj = ui), where ST is a non-logical constant of
type (se)t with the intuitive interpretation “is a store”. The second condition that is to be fulfilled
if we want our treatment of assignments to be correct, is that for each i there really is a j in the
model such that i[v]j A vj = ui. Until now there is nothing that guarantees this. For example,
some of our typed models may have only one state in their domain Ds. In models that do not
have enough states an attempt to update a store may fail; we want to rule out such models. In
fact, we want to make sure that we can always update a store selectively with each appropriate
value we may like to. This we can do by means of the following axiom.

AX1 ViVveVxe(STv — j(ilvlj A vj = x))

This makes sure that an assignment is always possible by postulating that the required state al-
ways exists. The axiom scheme is closely connected with Goldblatt’s [1987, pp. 102] require-
ment of ‘Having Enough States’ and with Janssen’s ‘Update Postulate’. We’ll refer to it as the
Update Axiom. It follows from the axiom that not all type se functions are stores (except in the
marginal case that D, contains only one element), since, for example, a constant function that
assigns the same value to all states cannot be updated to another value. The Update Axiom im-
poses the condition that contents of stores may be varied at will.

Of course store names should refer to stores and that is just what the following axiom scheme
requires.

8 This is the official position. Once the basic confusion is removed there seems to be no harm in some happy
sinning against strict usage.

420

AX2 STv for each store name v

The combined effect of these axioms and the definition of i[v]j now guarantees that assignment
statements always get the interpretation that is desired.

There is one more axiom scheme that we shall need, an axiom scheme that is completely rea-
sonable from a programming point of view: although different stores may have the same value at
a given state, we don’t want two different store names to refer to the same store. An assignment
v:= u should not result in an update of w simply because v and w happen to be names for the
same store and from i[v]j we want to be able to conclude that ui = uj if u and v are different
store names. This we enforce simply by demanding

AX3 u+v for each two syntactically different store names u andv

This ends our discussion of the assignment statement and it ends our discussion of the more gen-
eral part of the theory. All programming concepts that are needed in the rest of the paper have
been introduced now. Essentially we have shown how to treat the class of so-called while pro-
grams in Montague Grammar.’ Since every computable function can be implemented with the
help of a while program this means that we can do any amount of programming in classical type
theory.

2. NOMINAL ANAPHORA

In this section I’ll define a little Montague fragment of English, treating anaphora in the way of
Kamp [1981] and Heim [1982]. The result can be viewed as a direct generalization of
Groenendijk & Stokhof’s system of ‘Dynamic Predicate Logic’ (Groenendijk & Stokhof [1989])
to the theory of types.!0 The fragment will be based on a system of categories that is defined in
the following manner.

i. S and E are categories;
ii. If A and B are categories, then A /2 B is a category (n = I).

Here S is the category of sentences (and texts). The category E does not itself correspond to any
class of English expressions, but it is used to build up complex categories that do correspond to
such classes. The notation /7 stands for a sequence of n slashes. I'll employ some familiar ab-
breviations for category notations, writing

VP (verb phrase) for S/E,

N (common noun phrase) for S/E,

NP (noun phrase) for S/VP,

TV (transitive verb phrase) for VP/NP, and
DET (determiner) for NP/N.

9 The statement while A do & can be defined as (A7, a)*; ~A 7.
10 In fact the present system is closer to DPL than Groenendijk & Stokhof’s own generalization, DMG, is.
Roughly, what Groenendijk & Stokhof do on the metalevel of DPL I do on the object level of type theory.

421

The analogy that we have noted between programs and texts motivates us to treat sentences, and
indeed texts, as relations between states, objects of type s (st), just like programs. The category
E we associate with type e. More generally, we define a correspondence between types and
Montague’s categories as follows. '

i. TYP(S)=s(st); TYP(E)=¢;
ii. TYP(A/nB) = (TYP(B),TYP(A))

The idea is that an expression of category A is associated with an object of type TYP(A) and
that an expression that seeks an expression of category B in order to combine with it into an ex-
pression of category A is associated with a function from TYP(B) objects to TYP(A) objects,
or, equivalently, witha (TYP(B),TYP(A)) object.

To improve readability let’s abbreviate our notation for types somewhat and let’s write
[a...a,]instead of (a; (&, (. .., (s(st)) . ..). Under this convention, the rule above as-
signs the types listed in the second column of the table below to the categories listed in its first
column.

Category Type Some basic expressions

VP [e] walk, talk

N [e] farmer, donkey, man, woman, bastard
NP [[ell Pedro,, John,, it,, he,, she, (n=1)
v [[lelle] own, beat love

DET [lellell ap, everyn, the,, nop, (n=z1)

(N/N)/VP [lellele]l who
(s/8)/s5 M and, or, . (the stop)
(s/78)7s N if

Some basic expressions belonging to these categories I have listed in the third column. From
these the complex expressions of our fragment are built. An expression of category A /7 B will
combine with an expression of category B and the result will be an expression of category A.
For example, the word &, of category DET (defined as NP /N) combines with the word
farmer of category N to the phrase a, farmer, which belongs to the category NP. The exact
nature of the way expressions are combined need hardly concern us here. Mostly, combination is
just concatenation, but some syntactic fine-tuning is needed in order to take care of things like
word order and agreement.

Determiners, proper names and pronouns are indexed, as the reader will have noticed. As
usual, coindexing is meant to indicate the relation between a dependent (for example an anaphoric
pronoun) and its antecedent. So in the short text

3) A; farmer owns ao donkey. They bastard beats ito

the coindexing indicates that the bastard depends on a farmer and that jt depends on a don-
key. In this paper we study only the semantic aspects of the dependent / antecedent relation, but
our considerations should be supplemented with a syntactic theory of the same relation, such as
the Binding Theory (see e.g. Reinhart [1979], Bach & Partee [1981]). The Binding Theory rules
out certain coindexings that are logically possible but syntactically impossible. Our version of

422

Dynamic Montague Grammar is designed to answer the question how in a syntactically accept-
able text a dependent manages to pick up a referent that was introduced by its antecedent; so we
may restrict ourselves to the study of texts that are coindexed in a syntactically correct way.

In order to provide our little fragment of English with an interpretation we shall translate it into
type theory. Expressions of a category A will be translated into terms of type TYP(A). The
translation of an expression, or, to be precise, the set of terms that are equivalent (given the ax-
ioms) with the translation of an expression, we identify with its meaning. Thus we can make
predictions about the semantic behaviour of expressions on the basis of the logical behaviour of
their translations. The function that assigns translations to expressions is defined as usual, rule-
to-rule, inductively, by specifying (a) the translations of basic expressions and (b) how the
translation of a complex expression depends on the translations of its parts.

To start with (b), our rule for combining the translation of a category A /7 B expression with
the translation of an expression of category B is always functional application. That s, if o isa
translation of the expression £ of category A/7 B and if £ translates the expression & of
category B, then the translation of the result of combining X and £ is the term o€

Translations of basic expressions, to continue with (a), can be specified by simply listing them
and this I’ll do now. A detailed explanation will be given shortly.!!

an - AP PAIjAKkh (ilv, 1k A Py (v,k)kh A Py(v,k)hj)
non - APPAij(i = j A —~3khl(ilv,1k A P;(v,k)kh A P,(v,k)hI))
every, APPAjj(i = j A VKkI((ilv, 1k A P)(v,k)kI) — Hh P,(v,k)Ih))
the, - AP PALAK (P (v k)ik A Py(v, Kk)kj)
Pedro, APAij(v,i = pedro A P(v,i)ij)
hen v APAij (P(v,i)ij)
if - ApgAij(i=j A Vh(pih — Hk qhk))
and - Apgrijdh(pih A qhj)
v ApqAijdh(pih A ghj)
or - Apqrij(i =j A Ah(pih v gih))
who ~> AP]Pzﬂx)tI:iﬂh (szih A P]th)
farmer AxAjj(farmerx A i = j)
walk - AxAfj(walk x A1 =)
fove > AQAY (QXxAij(Tove xy A i = j))

In these translations we let h, i, j, k and I be type s variables; x and y are type e variables;
(subscripted) P is a variable of type TYP(VP); Q avariable of type TYP(NP); p and q are
variables of type s(st); pedro is a constant of type e; farmer and walk are type et constants;
love is a constant of type ¢(et) and each v, is a store name.

To grasp how things work one is advised to make a few translations and by way of example
I'll work out some translations in detail, making comments as I go along. I’ll start with text (3).

3) A, farmer owns a, donkey. The, bastard beats it,

11 Not all basic expressions given in the table above can be found in this list but for each item in the table an

example is listed. So, e.g., the translation of own will be analogous to that of fove, the translation of it, will
be analogous (and in fact identical) to that of he,.

423

The combination &y farmer is translated by the translation of a; applied to the translation of
farmer. Some lambda-conversions reduce this to

(4) APijAkh (ilv;1k A farmer(v;k) A k = h A P(v,k)hj);
and by predicate logic this is equivalent to
(5) APAijAk (ilv, 1k A farmer(v;k) A P(vk)kj).
In a completely analogous way we find that 2, donkey translates as
(6) APMijak (ilv, 1k A donkey(v,k) A P(v,k)kj).
And from this we derive that own a, donkey has a translation equivalent to
(7 AyAij(il v, 1j A donkey (v,j) A own(v,j)y),
so that for a; farmer owns a, donkey we find
(8) Aijdk (ilv, 1k A farmer(vik) A k[v, 1j A donkey(v,j) A own(v,j)(v, k)).

Thus far everything was lambda-conversion and ordinary logic; but now we come to a reduction

that is specific to our system. First, using the definition of k[v;]j (and AX3), note that the term
above is equivalent to

(9) Aijak (ilv, 1k A farmer(vyj) A klv, 1j A donkey (vyi) A own(v,j) (v,j)).
Now let us write i[v;, v;1j for Ak (i[v;1k A k[v;1j). Then our term reduces to
(10) Aj(ilvy, v, 1j A farmer(v, j) A donkey(v,j) A own(v,j) (v, j)).

A moment’s reflection and an application of the Update Axiom learns us that i[v, , v,]j means
‘states i and j agree in all stores except possibly in v, and v,’. Since this new notation will
prove useful on many occasions we may generalize it somewhat. Let uy, ..., u, be store names,
then by induction i[uy, ..., u,]j is defined to abbreviate Tk (i[u;1k A kluy, ..., uzlj).
Again, by the Update Axiom the formula i[u,, ..., u,]j means: ‘states 7 and j agree in all
stores except possibly in vy, ..., u,’.

The upshot of the translation process thus far is that we have associated a certain relation be-
tween context states with the sentence ay farmer owns a, donkey. The relation in question
holds between states i and j if these states differ in maximally two of their stores, v; and v,
and if the values of these stores in j are a farmer and a donkey that he owns respectively. In fact
the sentence a; farmer owns a; donkey now has aspects that we find in assignment state-
ments in a programming language: it assigns a farmer to v, and a donkey to v, and imposes the
further constraint that the farmer owns the donkey. Of course the assignment is nondeterministic:
there may be more than one farmer and one donkey in the model that satisfy the description, or
there may be none.

424

Let’s continue our translation. By a procedure that is now entirely familiar we find that they
bastard beats it, translates as :

(11) Aij(bastard (v, i) A beat(v,i)(v;i) A 1=J).

This means that the sentence functions as a test: it denotes the set of all pairs (i, i) such that the
value of store v; at J is a bastard that beats the value of store v,.

We can now combine the two sentences. Sentence concatenation is symbolized with the full
stop, which is assigned category (S/S) /S; its meaning is ApgAijdh (pih A ghj): sequencing.
Applying this first to (10) and then applying the result to (11) gives the translation of (3).

(12) Aij(ilv,, v, 1j A farmer(v,j) A donkey(v,j) A own(v,j) (v, f)
A bastard(v,j) A beat(v,j)(v,j)).

We see that the relation expressed by (10) is now restricted properly by the test in (11).
Moreover, we see that the discourse referents that were created by the antecedents a; farmer
and a, donkey in the first sentence of (3) are now picked up by the dependents they bastard
and it

The relation in (12) gives the meaning of text (3), but to get at the truth conditions one further
step is needed. We say that a text is true in a context state i (in some model) if there is some
context state j such that (i, j) is in the denotation of the meaning of the text. If R is the meaning
of some text then we call its domain Aij Rij, the set of all states in which the text is true, its
content. The step from meaning to truth parallels a similar step taken in DRT: a discourse repre-
sentation structure is true if it has a verifying embedding.

Clearly the content of (3) is :

(13) Aigj (ilvy, v, 1j A farmer(v, j) A donkey(v,j) A own(v,j)(v,j)
A bastard(v,j) A beat(v,j)(v,j)).

But this can be simplified considerably, for it is equivalent to (14). Quantifying over a state has
the effect of binding unselectively the contents of all stores in that state.

(14) Aidxy(farmer x A donkeyy A ownyx A bastard x A beat yx).

To show the equivalence, we may abbreviate the conjunction farmer x A donkeyy A own yx A
bastard x A beat yx as ¢ for the moment. Suppose (13) holds for some 7. Then there are ob-
jects, namely the values of v,j and v,j, that satisfy ¢ . It follows that (14) is true in i.
Conversely, suppose that (14) is true for some 7. Then there are d , and d, that satisfy ¢. By the
Update Axiom there is a j differing from i at most in stores v, and v,, such that v,j = d,
and v,j = d,. Hence &j(ilv;, v,1j Alv, j/x, v,j/yl@) holds, so that (13) is true in 7.

The principle underlying the equivalence of (13) and (14) is important enough to state it in full
generality. I call it the Unselective Binding Lemma.

UN.SELECI‘IVE BINDING LEMMA. Let uy, ..., u, be store names, let x,..., x, be distinct
vana-bles, let ¢ be a formula that does not contain j and let [u,j/x, ... , uy/x, l¢ stand for
the simultaneous substitution of uj for x; and . . . and u,j for x, in ¢, then:

425

® Tj (iluy, oo, wj Alug/xg, ..., wji/ x, 1) is equivalent with
Ixp...x, 0

(ii) Vi Giluy, ..., u,li = [uyg/xy, ..., uj/ %, @) is equivalent with
VXx;... Xa

I omit the proof of this lemma since it is an obvious generalization of the proof of the equivalence
of (13) and (14) given above ((ii) follows from (i) of course).

We see that (3) is true in a context state if and only if it is true in all other context states, the
content of (3) either denotes the empty set or the set of all states, depending on whether there is a

farmer who owns a donkey in the model and whether the bastard beats it. But this does not hold
for all texts; let’s consider sentence (15) for instance.

(15) He; beats ap donkey

The pronoun he; cannot be interpreted as dependent on some antecedent provided by the text in
this case. And so it must be interpreted deictically, its referent must be provided by the context.
Now let us look at the meaning and the content of (15), given in (16) and (17) respectively.

(16) Aij(ilv, 1j A donkey(v,j) A beat (v,7)(v,1))
an Aifx (donkey x A beat x (v,;1))

We see that (15) is true only in contexts that provide a referent for the deictic pronoun he;. The

reader may wish to verify that texts containing a proper name or a definite noun phrase that lacks
an antecedent are treated likewise.

If a text contains an indefinite right at the start, the discourse referent created by that indefinite
will live through the entire text and can be picked up by a dependent at any point. But some dis-
course referents have only a limited life span. In order to see how our system can account for
this, let’s work out the translation of the following celebrated example.

(18) Every; farmer who owns as donkey beats it»

First we apply the translation of who, AP,P,AxAijdh(Pyxih A Pixhj j, which gives a general-
ized form of conjunction, to the VP own a- donkey. The result, after conversions, is

(19) APAxAijdh(Pxih A hlv, 1j A donkey (v,j) A own(v,j)x).
Applying this to the translation of farmer results in
(20) AxAdj(farmer x A il v, 1j A donkey(v,j) A own(v,j)x),

the translation of farmer who owns a, donkey. Next we combine this result with the transla-
tion of the determiner every;. This gives the following term:

(#3)) APAij(i =j A VI{(ilv,, v,]1 A farmer(v,I) A donkey(v,1)
A own(v,1)(v, 1)) — dh P(vk)Ih)).

426

Finally a combination with the VP beat it; yields:

(22) Aij(i=j A VI((ilv,, v,]I A farmer(v;I) A donkey(v,I)
A own(vy 1) (v 1)) — beat (v,1)(v,1)),

which by the Unselective Binding Lemma is equivalent to
(23) Mj(i=j A Vxy((farmerx A donkeyy A own yx) — beat yx)).

The translation of a universal sentence thus acts as a fest; it cannot change the value of any store
but can only serve to rule out certain continuations of the interpretation process. The discourse
referents that were introduced by the determiners every; and a, had a limited life span. Their
role was essential in obtaining the correct translation of the sentence, but once this translation was
obtained they died and could no longer be accessed. There are more operators that behave in the
way of every, in this respect: in the fragment under consideration the determiner no, , and the
words if and or have a very similar behaviour.

REFERENCES

Bach, E. and Partee, B.H.: 1981, Anaphora and Semantic Structure, CLS 16, 1-28.

Barwise, J.: 1981, Scenes and Other Situations, The Journal of Philosophy, 78, 369-397.

Barwise, J.: 1987, Noun Phrases, Generalized Quantifiers and Anaphora, in P. Girdenfors
(ed.), Generalized Quantifiers, Reidel, Dordrecht, 1-29.

Barwise, J. and Cooper, R.: 1981, Generalized Quantifiers and Natural Language, Linguistics
and Philosophy 4, 159-219. ‘

Barwise, J. and Perry J.: 1983, Situations and Attitudes MIT Press, Cambridge, Massachusetts.

Barwise, J and Etchemendy, 1987, The Liar: An Essay on Truth and Circularity, Oxford
University Press.

Biuerle, R., Egli, U., and Von Stechow, A. (eds.): 1979, Semantics from Different Points of
View, Springer, Berlin.

Chierchia, G.: 1990, Intensionality and Context Change, Towards a Dynamic Theory of
Propositions and Properties, manuscript, Cornell University.

Church, A.: 1940, A Formulation of the Simple Theory of Types, The Joumnal of Symbolic
Logic 5, 56-68.

Gabbay, D. and Giinthner, F. (eds.): 1983, Handbook of Philosophical Logic, Reidel,
Dordrecht.

Gallin, D.: 1975, Intensional and Higher-Order Modal Logic, North-Holland, Amsterdam.

Goldblatt, R.: 1987, Logics of Time and Computation, CSLI Lecture Notes, Stanford.

Groenendijk, J. and Stokhof, M.: 1989, Dynamic Predicate Logic, ITLI, Amsterdam. To appear
in Linguistics and Philosophy.

Groenendijk, J. and Stokhof, M.: 1990, Dynamic Montague Grammar, in L. Kalmén and L.
Pélos (eds.), Papers from the Second Symposium on Logic and Language, Akadémiai
Kiado, Budapest, 3-48.

Harel, D.: 1984, Dynamic Logic, in Gabbay & Giinthner [1983], 497-604.

427

Heim, I.: 1982, The Semantics of Definite and Indefinite Noun Phrases, Dissertation,
University of Massachusetts, Amherst. Published in 1989 by Garland, New York.

Henkin, L.: 1963, A Theory of Propositional Types, Fundamenta Mathematicae 52, 323-344.

Janssen, T.: 1983, Foundations and Applications of Montague Grammar, Dissertation,
University of Amsterdam. Published in 1986 by CWI, Amsterdam.

Kamp, H.: 1981, A Theory of Truth and Semantic Representation, in J. Groenendijk, Th.
Janssen, and M. Stokhof (eds.), Formal Methods in the Study of Language, Part I,
Mathematisch Centrum, Amsterdam, 277-322.

Karttunen, L.: 1976, Discourse Referents, in J. McCawley (ed.), Notes from the Linguistic
Underground, Syntax and Semantics 7, Academic Press, New York.

Lewis, D.: 1979, Score Keeping in a Language Game, in Biuerle, Egli & Von Stechow [1979],
172-187.

Montague, R.: 1973, The Proper Treatment of Quantification in Ordinary English, reprinted in
Montague [1974], 247-270.

Montague, R.: 1974, Formal Philosophy, Yale University Press, New Haven.

Muskens, R.A.: 1989a, Going Partial in Montague Grammar, in R. Bartsch, J.F.A.K. van
Benthem and P. van Emde Boas (eds.), Semantics and Contextual Expression, Foris, Dor-
drecht, 175-220.

Muskens, R.A.: 1989b, Meaning and Partiality, Dissertation, University of Amsterdam.

Muskens, R.A.: to appear, Tense and the Logic of Change, paper submitted to the proceedings
of the Third Symposium of Logic and Language, Budapest.

Muskens, R.A.: in preparation, Logical Semantics for Programming Languages.

Orey, S.: 1959, Model Theory for the Higher Order Predicate Calculus, Transactions of the
American Mathematical Society 92, 72-84.

Pratt, V.R.: 1976, Semantical Considerations on Floyd-Hoare Logic, Proc. 17th IEEE Symp. on
Foundations of Computer Science, 109-121.)

Reinhart, T.: 1979, Syntactic Domains for Semantic Rules, in F. Giinthner and S. Schmidt
(eds.), Formal semantics and Pragmatics for Natural Languages, Reidel, Dordrecht.

Rooth, M.: 1987, Noun Phrase Interpretation in Montague Grammar, File Change Semantics,
and Situation Semantics, in P. Girdenfors (ed.), Generalized Quantifiers, Reidel,
Dordrecht, 237-268.

